42,390 research outputs found

    Gribov ambiguities at the Landau -- maximal Abelian interpolating gauge

    Get PDF
    In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived.Comment: Several changes: figures removed, typos corrected and discussions included. 24 pages, to appear in EPJ

    On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories

    Full text link
    An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results.Comment: 29 pp. No figures. Discussions added. Final version to appear in EPJ

    Inner and outer edge states in graphene rings: A numerical investigation

    Full text link
    We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size requirements - higher quality figures on reques

    A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Full text link
    In this work, we study the propagators of matter fields within the framework of the Refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the Refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST invariant formulation of the Gribov-Zwanziger framework achieved in [Capri et al 2016], the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.Comment: 27 pages, no figures; V2, minor modifications, to appear in EPJ

    Space-time Torsion and Neutrino Oscillations in Vacuum

    Full text link
    The objective of this study is to verify the consistency of the prescription of alternative minimum coupling (connection) proposed by the Teleparallel Equivalent to General Relativity (TEGR) for the Dirac equation. With this aim, we studied the problem of neutrino oscillations in Weitzenbock space-time in the Schwarzschild metric. In particular, we calculate the phase dynamics of neutrinos. The relation of spin of the neutrino with the space-time torsion is clarified through the determination of the phase differences between spin eigenstates of the neutrinos.Comment: 07 pages, no figure
    • …
    corecore